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Abstract

We study a minimal model of automation in which labor is asymptotically replaced
by capital in all tasks. Heterogeneity in broadly defined financial frictions naturally
produces “workers” and “capitalists.” If tasks are gross complements and automation
progresses sufficiently slowly, asymptotically full automation does not immiserate work-
ers despite endogenously shrinking hours worked. Faster automation, however, lowers
workers’ consumption growth and output share. The threshold speed of automation
separating these outcomes maps to observables, and a first-pass calibration suggests
the current speed is below this threshold. For faster automation, redistribution funded
by capital taxation serves workers better than deliberately slowing automation.
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1 Introduction

Technological advance has allowed the automation of many tasks historically performed by workers.

Recent progress in artificial intelligence raises the prospect that, asymptotically, all tasks will be

automated, prompting concerns about how future individuals will earn their living. Will asymptotic

automation generate widely shared economic benefits, as many past technological advances have

done? Or will it instead lead to widespread immiseration, with its benefits flowing overwhelmingly

to the owners of capital?

In this paper, we analytically characterize the implications of standard economic forces for this

question. We establish that whether or not the benefits of automation are broadly shared hinges

on whether the speed of automation is above or a below a critical threshold, which we characterize

and relate to observables.

For automation speeds below the threshold, the Baumol and Bowen (1965) force implies that

wages for work on yet-to-be-automated tasks rise quickly enough to offset the shrinking set of such

tasks.1 Workers’ income rises in line with overall GDP, even as workers enjoy increasing leisure.

Both workers’ income and GDP grow faster as the rate of automation locally increases. While locally

faster automation shrinks the labor share of the economy, workers’ income nonetheless increases in

absolute terms, because of benefits of a higher growth rate.

In contrast, automation speeds above the threshold are threatening for workers. The specific

outcome depends on parameter values, and in particular, the strength of complementarities be-

tween consumption and leisure, and across different tasks. For weak complementarities, the growth

rate of workers’ consumption is locally decreasing in the speed of automation. Moreover, workers’

consumption is an asymptotically negligible share of the economy. For strong complementarities,

multiple equilibria co-exist—one in which workers share in the fruits of automation, as described

above, and a second in which workers’ consumption and income grow at strictly lower rates, both

relative to the first equilibrium and relative to the growth rate of the economy.

As noted, we relate the critical threshold rate of automation to observables. A first-pass calibra-

tion suggests that the current speed of automation in the US is below this threshold, and accordingly,

that the current path of automation will result in the benefits of technological advance being widely

shared. But the existence of a threshold rate also highlights why the prospect of increasing rates of

automation should be taken seriously.

Workers and capitalists emerge as distinct groups in our analysis solely due to differences in

their investment abilities. That is, workers are simply agents who are worse at investing capital.

Heterogeneity of investment returns across individuals is well-documented (e.g., Fagereng et al.,

2020; Bach et al., 2020; Smith et al., 2022). We model this heterogeneity as stemming directly from

financial frictions: Workers experience a higher investment cost than capitalists. We note that this is

isomorphic to differences in time preference rates, which are often associated with wealth inequality

1See Aghion et al. (2019) for a related observation in a representative agent economy with exogenous
labor supply and savings rates.
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(e.g., Ramsey, 1928; Krusell and Smith, 1998) and enjoy similar empirical support (e.g., Lawrance,

1991; Epper et al., 2020), and that heterogeneity in risk aversion (e.g., Cronqvist and Siegel, 2015),

background risk, or ability to diversify wealth would generate similar effects. Throughout, we refer to

the heterogeneity in investment returns as financial frictions, though this term should be interpreted

broadly.

To keep our analysis as close to a benchmark as possible, we assume that “workers” and “capi-

talists” are ex ante identical in all other respects—in particular, they have identical preferences and

labor productivities.

The most striking effect of financial frictions on equilibrium outcomes emerges when both the

complementarities of different tasks and of consumption and leisure are strong. In this case, an

increase in financial frictions makes capital dominance more likely. Roughly speaking, greater

financial frictions push workers to save more to offset these frictions, and to reduce both consumption

and leisure (the two are complements). The associated increase in labor depresses wages, pushing

towards capital dominance. Consequently, government policies to reduce financial frictions help

workers both directly, and via the equilibrium effect of whether capital dominance occurs.

Our analysis suggests that workers respond to automation by reducing hours worked. Although

one may be tempted to conclude that shrinking labor supply contributes to capital dominance, the

reverse is true. In a perturbation of our model in which labor supply of workers is exogenous and

constant, wage growth is slower and capital dominance occurs for a wider range of parameter values.

Our aim in this paper is to take seriously the prospect that all tasks will eventually be automated,

and to analyze the consequences for the economy. As such, we take the speed of automation

as exogenous; the key endogenous objects are workers’ and capitalists’ consumption and labor

responses, and the associated equilibrium wages and capital return rates.

Some of the results above depend on consumption and leisure being (gross) complements. The

opposite assumption of (gross) substitutes implies—for many parameter values—increasing labor

over time, a prediction at odds with time-series and cross-country evidence (e.g., Becker, 1965;

Huberman and Minns, 2007; Feenstra et al., 2015).2 Bick et al. (2018) further find that for most

countries, the amount of hours worked is decreasing in the wage.

Related literature:

Our conceptualization of the automation process directly follows the insightful work of Aghion et al.

(2019). Relative to that paper, we endogenize both savings and labor supply, and depart from the

representative agent framework by introducing financial frictions which in turn generate distinct

populations of workers and capitalists. These features are necessary to address the questions laid

out above and to take the fully characterized capital-dominance threshold to the data.

Following earlier models of automation, we view technological progress as a gradual replacement

2Keynes (1930) famously predicted a 15-hour workweek for his grandchildren thanks to rising productivity.
Boppart and Krusell (2020) write: “As it turned out, Keynes was wildly off quantitatively, but he was right
qualitatively (on this issue).”
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of labor with capital as a production factor (Zeira, 1998; Acemoglu and Restrepo, 2018a,b). In this

view, automation extends beyond artificial intelligence to major sources of economic growth since

the Industrial Revolution.

Acemoglu and Restrepo (2018b) endogenize automation and the invention of new tasks in which

labor has a comparative advantage. They find that long-run factor shares are stable if the long-run

rental rate of capital is sufficiently high. Intuitively, automation reduces the cost of labor, thereby

discouraging further automation and encouraging the development of new tasks. In our case, the

labor share stabilizes despite exogenous automation of all tasks in the limit. Our mechanism works

through complementarity between tasks (the Baumol effect) and between consumption and leisure.

In Moll et al. (2022), automation increases inequality via returns to wealth and by facilitating

stagnant wages. As in their model, returns to capital rise with the speed of automation (up to

the capital-dominance threshold), and capital income tends to generate inequality in consumption

growth and consumption shares. Unlike in their model, where inequality is driven by stochastic

capital accumulation, our result is obtained from financial frictions motivated by the empirically

observed differences in average returns to capital. We also find that automation can reduce wages,

but only does so under very specific circumstances. With a low-to-medium speed of automation,

wage growth increases with the rate of automation.

Our analysis is predominantly concerned with the limit of full automation and the asymptotic

factor shares. Nonetheless, the key forces driving our mechanism also speak to three long-run

empirical trends: (i) the decline in hours worked (Boppart and Krusell, 2020), (ii) the rising capital

share (Karabarbounis and Neiman, 2014), which our model naturally connects to a decline in TFP

growth (Philippon, 2023), and (iii) a reallocation in output shares towards services (Boppart, 2014).

We discuss these trends in the context of the model in Subsection 5.6.

Our formulation of the capital-labor complementarity is distinct from the literature explaining

changes in skill premia through skill-biased technological change, that is, capital-skill complemen-

tarity in production (e.g., Acemoglu, 1998; Krusell et al., 2000; Autor et al., 2003).3 Instead, we

do not take a stance on the types of tasks that remain unautomated for longer, meaning the wages

from those tasks may be earned by nurses, teachers, athletes, or—as Baumol and Bowen (1965)

would have it—performing artists.

Because the rate of automation in our analysis is exogenously constant, the growth rate of the

economy converges in the long-run. In this sense, our analysis does not generate a “singularity”

in which the growth rate accelerates over time (see Nordhaus (2021), and references therein). It

does, however, suggest that if, for whatever reason, the rate of automation climbs sufficiently high

it overwhelms the economic forces stemming from the complementarity of different tasks, and the

complementarity of consumption and leisure, and the labor share of the economy converges to zero.

3Guerreiro et al. (2021) and Ray and Mookherjee (2022) study settings in which it is technologically
possible to automate all routine tasks immediately, and only the cost of automation (“robots”) prevents this
from happening. Instead, a crucial assumption for the Baumol-force to operate is that at any finite time
some tasks cannot be automated, though the number of such tasks asymptotes to zero.
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2 Model

2.1 Preferences and endowments

There is a unit mass of infinitely lived economic agents, each of whom continuously consumes,

works, and adjusts capital holdings. Population growth equals 0 (we have verified that, as in the

standard neoclassical growth model, steady state outcomes are independent of population growth).

Each agent discounts the future at rate ρ. There is no uncertainty.

Agents are either “workers” or “capitalists” (denoted by subscript ‘o’ for “owners”) with respective

measures λw and λo. The only difference between the two groups is that capitalists are more effective

at holding capital. Let Ki,t, Li,t, and Ci,t respectively denote the date t capital holding, time spent

working, and consumption of an agent of type i = w, o. Moreover, let Wt and Rt denote the date

t wage rate and return on capital (not including depreciation and other holding costs). Capital

accumulation for a type-i agent is

K̇i,t = RtKi,t +WtLi,t − δiKi,t − Ci,t,

where δi is the combined depreciation and holding costs experienced by type-i agents. We assume

throughout that4

δw > δo.

Each agent’s flow endowment of time is 1, so that flow leisure is 1− Li,t. Regardless of type, each

agent’s flow utility is

1

1− γ

(

C
η−1

η

i,t + ω (1− Li,t)
η−1

η

)
1−γ

1−
1
η .

Here, ω is a parameter determining the relative importance of leisure versus consumption; η is the

elasticity of substitution between consumption and leisure; while γ is the standard coefficient from

power utility functions. In the special case of ω = 0, the intertemporal elasticity of substitution is
1
γ
.

Agents are credit constrained, in the sense that capital holdings cannot be too negative. For

simplicity, we set the credit constraint at 0, i.e., Ki,t must satisfy

Ki,t ≥ 0.

We impose the standard transversality condition

lim
t→∞

Ki,t

ˆ t

0
e−(Rs−δi)ds = 0. (1)

4See Appendix C for an analysis of the (easier) representative agent case.

4



2.2 Technology

Following existing literature (see introduction), we conceptualize output as a single, composite

consumption good that is composed of a unit measure of complementary “tasks,” with the elasticity

of substitution across any pair of tasks equal to σ. A “task” should be interpreted generally. In

contrast to Acemoglu and Restrepo (2018b), we think of tasks as being fundamental “needs” such

as food, shelter, entertainment, transport etc., so that the set of tasks remains fixed over time (see

also Aghion et al. (2019)).

Importantly, we assume that tasks are gross complements, i.e., σ < 1. It is this assumption that

allows the Baumol force to potentially operate. Given our output formulation, the interpretation

of σ < 1 nests both preference-based complementarity across different consumption goods and

technology-based complementarity in production processes that combine intermediate tasks into

ultimate output goods.

Let αt be the fraction of tasks that has been automated at date t. Non-automated tasks are

executed using only labor. For automated tasks, capital and labor are perfect substitutes. In equi-

librium, capital grows without bound, so capital becomes abundant relative to labor; consequently,

in equilibrium automated tasks are (eventually) executed using only capital.

Let Kt and Lt denote aggregate capital and labor:

Kt = λwKw,t + λoKo,t

Lt = λwLw,t + λoLo,t.

Hence date t output is

Ft = F (Kt, Lt;αt) =

(

αt

(

AK
Kt

αt

)
σ−1

σ

+ (1− αt)

(

AL
Lt

1− αt

)
σ−1

σ

)

σ
σ−1

=

(

α
1

σ
t (AKKt)

σ−1

σ + (1− αt)
1

σ (ALLt)
σ−1

σ

)
σ

σ−1

. (2)

That is: each of the αt automated tasks receives capital Kt

αt
, and each of the 1− αt non-automated

tasks receives labor L
1−αt

. Parameters AK and AL determine the productivity of capital and labor.

For calibration (Section 6), note that the elasticity of substitution across tasks, σ, coincides with

the elasticity of substitution between capital and labor, which is estimated by a sizeable literature.

The marginal products of capital and labor are

FK,t =
∂

∂Kt
F (Kt, Lt;αt) = α

1

σ
t A

σ−1

σ

K K
−

1

σ
t F

1

σ
t (3)

FL,t =
∂

∂Lt
F (Kt, Lt;αt) = (1− αt)

1

σ A
σ−1

σ

L L
−

1

σ
t F

1

σ
t . (4)

As time passes, more and more tasks are automated. Our focus is on the consequences of
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automation, so we take the automation process as exogenous, reflecting an immutable “march of

progress.” Specifically, automation proceeds at rate θ > 0:

α̇t = (1− αt) θ.

Asymptotically all tasks are automated; but at any finite time t, some tasks remain non-automated.

Looking ahead, faster automation is associated with lower relative wages in equilibrium, i.e.,

lower
FL,t

FK,t
. Consequently, the likely effects of endogenizing the pace of automation hinge on whether

innovation is labor- or capital-intensive. Labor-intensive automation would amplify the effects of

exogenous variation in automation rates. In contrast, capital-intensive automation—often invoked

in “singularity” discussions—would dampen the effects of exogenous variation.

2.3 Equilibrium

An equilibrium consists of paths {Ki,t, Ci,t, Li,t} for i = w, o and rental rates and wages {Rt,Wt}

such that {Ki,t, Ci,t, Li,t} is individually optimal for each agent given the path of {Rt,Wt}, while

rental rates and wages are determined by the competitive conditions

Rt = FK (Kt, Lt;αt)

Wt = FL (Kt, Lt;αt) .

2.4 Parameter assumptions

To capture the Baumol effect, and consistent with empirical estimates, we assume that tasks are

gross complements,

σ < 1.

We further assume that consumption and leisure are gross complements,

η < 1.

Under the alternative assumption (η > 1), many parameter configurations deliver equilibria in which

leisure converges to 0, while observed trends indicate increases in leisure. These trends also motivate

our deviation from KPR-preferences (King et al., 1988) which generate stable labor supply.

Throughout, we assume that for i = o, w

AK − δi > ρ > (1− γ) (AK − δi) . (5)

The first inequality ensures capital growth in a benchmark economy with production AKKt, while

the second inequality ensures the transversality condition is satisfied in the same benchmark.
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3 Labor share dynamics and capital dominance

We first define our notions of a stable labor share and capital dominance; note some important

implications of these definitions; and derive laws of motion for key aggregate quantities. This

section uses only the definition of the production function (2).

The date-t labor share of the economy is

Xt ≡
LtFL,t

Ft
= 1−

KtFK,t

Ft
. (6)

Definition 1 We say that capital dominance occurs if limt→∞Xt = 0. If instead limt→∞Xt > 0,

we say that the labor share is stable.

Throughout, we write lim for limt→∞, and typically omit time subscripts when characterizing

asymptotic behavior.

Let gR and gW denote the growth rates of return-on-capital Rt and wages Wt, with parallel

notation for growth rates of other quantities. From (3) and (4),

gR,t =
1

σ

(

gF,t − gK,t + θ
1− αt

αt

)

, (7)

gW,t =
1

σ
(gF,t − gL,t − θ) , (8)

Hence capital and labor shares 1−X and X evolve according to

g1−X,t = gK,t + gR,t − gF,t = (1− σ) gR,t + θ
1− αt

αt
. (9)

gX,t = gL,t + gW,t − gF,t = (1− σ) gW,t − θ. (10)

So capital dominance occurs if

lim gW <
θ

1− σ
,

while a stable labor share requires

lim gW =
θ

1− σ
. (11)

Lemma 1 Output evolves according to

gF,t = (1−Xt) gK,t +XtgL,t +
θ

1− σ

(

1−
1−Xt

αt

)

. (12)

We characterize the economy as the fraction of automated tasks αt approaches 100%. We focus

on equilibria in which the capital share has a well-defined and strictly positive limit. From (7) and

(9) it is immediate that, asymptotically, output and capital grow at the same rate:

lim gF = lim gK . (13)
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From (7), the rental rate FK,t asymptotically converges; define

F̄K ≡ limFK .

The capital share is straightforwardly a function of the rental rate:

1−Xt = αt

(

FK,t

AK

)1−σ

, (14)

and so in particular the limiting capital share is

lim (1−X) =

(

F̄K

AK

)1−σ

. (15)

In a capital-dominant equilibrium,

lim
F

K
= F̄K = AK . (16)

Finally, the bounded nature of labor Li and leisure 1 − Li means that, provided labor has a well-

defined asymptotic value, the asymptotic growth rates of leisure and labor are weakly negative:

lim g1−L ≤ 0 (17)

lim gL ≤ 0. (18)

Moreover, at least one of (17) and (18) holds with equality.

4 Analysis

4.1 Optimality conditions

The marginal utilities of consumption and leisure are

MUCi,t = C
−

1

η

i,t

(

C
η−1

η

i,t + ω (1− Li,t)
η−1

η

)
1−ηγ

η−1

MU1−Li,t = ω (1− Li,t)
−

1

η

(

C
η−1

η

t + ω (1− Li,t)
η−1

η

)
1−ηγ

η−1

.

The intratemporal and intertemporal optimality conditions are

WtC
−

1

η

i,t ≤ ω (1− Li,t)
−

1

η , (19)

∂

∂t
lnMUCi,t ≤ − (Rt − δi − ρ) , (20)
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with (19) at equality if labor is strictly positive (Li,t > 0), and (20) at equality if capital-holding is

strictly positive (Ki,t > 0).

Looking ahead: The fact that workers and capitalists differ in δi makes the corners of no-work

and no-capital relevant.

If type-i agents work then, from (19),

gCi
− g1−Li

= ηgW ; (21)

and,

MUC,t = C−γ
t

(

1 + ωηW 1−η
t

)
1−ηγ

η−1

. (22)

Consequently, if type-i agents work their marginal utility grows according to

∂

∂t
lnMUCi

= −γgCi
− (1− ηγ)

ωηgW
W η−1 + ωη

,

while if they are at the no-work corner,

∂

∂t
lnMUCi

= −
1

η
gCi

+
1− ηγ

η

gCi
C

η−1

η

i

C
η−1

η

i + ω

= −gCi

γC
η−1

η

i + ω
η

C
η−1

η

i + ω

. (23)

The assumption that capital is sufficiently productive to drive long-run growth (5), together with

the complementarity of consumption and leisure (η < 1), ensure that in all equilibria:

Lemma 2 Asymptotically, the leisure growth rate of both groups is 0, lim g1−Li
= 0; and wages and

consumption of both groups grow at a strictly positive rate.

4.2 Factor segmentation

Because asymptotic leisure growth is 0, if both workers and capitalists work asymptotically then

their consumption growth rates would coincide, by (21). In this case, it is impossible to satisfy the

intertemporal optimality condition (20) with equality for both groups. Consequently:

Corollary 1 At least one group must be either at the no-capital corner or the no-labor corner.

By Lemma 2, consumption grows without bound for both groups, as does the wage rate. From

(22) and (23), it follows that regardless of whether or not a group i = o, w works

lim
∂

∂t
lnMUC,i = −

1

η
lim gCi

, (24)

and the asymptotic intertemporal condition is

lim gCi
≥ η

(

F̄K − δi − ρ
)

, (25)
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with equality for any group that holds capital.

Our next result characterizes which of the no-work and no-capital corners are relevant. It also

justifies our terminology of “workers” and “capitalists.”

Lemma 3 Capitalists hold capital and workers work. In a capital-dominant equilibrium, capitalists

do not work. In a stable labor share equilibrium, workers do not hold capital.

Since workers work, and their leisure asymptotes to its upper bound, the fact that both workers

and capitalists’ labor choices satisfy intratemporal optimality ((19) and (21)) implies:

Corollary 2 Asymptotically, wages grow strictly faster than workers’ consumption,

lim gW =
1

η
lim gCw

; (26)

and capitalists’ consumption grows weakly faster than workers’ consumption:

lim gCo
≥ lim gCw

.

Since capitalists’ are advantaged in holding capital, and since their consumption grows at least as

fast as that of workers:

Lemma 4 Asymptotically, output, capitalists’ consumption, and capitalists’ capital-holdings all

grow at the same rate,

lim gF = lim gCo
= lim gKo

.

4.3 Capital-dominant equilibria

From Lemma 3, in a capital-dominant equilibrium capitalists do not work, and hence workers must

do so. One possibility is that both capitalists and workers hold capital:

Proposition 1 A capital-dominant equilibrium in which workers hold capital exists if

θ ≥ (1− σ) (AK − δw − ρ) + η (δw − δo) . (27)

Consumption growth of group i satisfies

lim gCi
= η (AK − δi − ρ) . (28)

Labor converges towards 0 according to

lim gLw
= (η − σ) (AK − δw − ρ) + η (δw − δo)− θ.

The second possibility is that workers do not hold capital:
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Proposition 2 A capital-dominant equilibrium in which workers do not hold capital exists if com-

plementarities are weak,5 σ + η > 1, and

θ ∈ [(1− σ) (AK − δo − ρ) , (1− σ) (AK − δw − ρ) + η (δw − δo)] . (29)

Capitalists’ consumption growth satisfies (28), while workers’ consumption growth satisfies

lim gCw
= η

lim gCo
− θ

σ + η − 1
< lim gCo

. (30)

Labor converges towards 0 according to

lim gLw
=

η − 1

η
lim gCw

. (31)

From Propositions 1 and 2, capital dominance emerges when the rate of automation is sufficiently

high.6 In particular, the Baumol effect, arising from task-complementarity (σ < 1) pushes against

capital dominance. Capital accumulation, which is asymptotically proportional to AK − δo − ρ in a

capital-dominant equilibrium, likewise pushes against capital dominance because it increases wages

relative to the return on capital. Capital dominance emerges when automation advances sufficiently

rapidly relative to the extent of complementarity and the rate of capital accumulation.

Capital dominance is associated with the immiseration of workers relative to capitalists. This

is immediate if workers do not hold capital (Proposition 2). But even when workers hold capital,

they are disadvantaged relative to capitalists in doing so (δw < δo). At the same time: Even in

a capital-dominant equilibrium workers’ consumption grows without bound, even as their leisure

approaches its upper bound.

4.4 Stable labor share equilibria

If instead automation proceeds more slowly, a stable labor share emerges. In this case, workers’ and

capitalists’ consumption grow at the same rate.

Proposition 3 A stable labor share equilibrium exists if

θ < (1− σ) (AK − δo − ρ) . (32)

5If complementarities are strong (σ + η < 1) then an unstable equilibrium in which workers do not
hold capital exists for automation speeds above the threshold (32) but below the threshold (27). This
equilibrium is unstable because a drop in worker consumption is self-reinforcing; see the heuristic argument
for the existence of multiple equilibria that follows Proposition 3, though in this case the argument is precise
because workers do not hold capital and so optimize period-by-period.

6See footnote 8 of Aghion et al. (2019) for a related statement in a representative-agent model with
exogenous capital accumulation and labor supply.
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Consumption of capitalists and workers grows at same rate,

lim gCo
= lim gCw

=
ηθ

1− σ
. (33)

Labor converges towards 0 according to (31). The labor share converges towards

limX = 1−

(

δo + ρ+ θ
1−σ

AK

)1−σ

. (34)

4.5 Summary

Together, Propositions 1-3 span the parameter space, and are illustrated by Figure 1. When the

combined complementarity of tasks (σ) and of consumption and leisure (η) is strong, stable labor

share and capital-dominant equilibria coexist for some parameters (Propositions 1 and 3). Heuris-

tically, coexistence arises because capital dominance is associated with lower worker consumption,7

which is in turn self-reinforcing: complementarity of consumption and leisure implies that low con-

sumption is associated with workers supplying a lot of labor; and this association is especially

strong when η is low. The large quantity of labor supplied is in turn associated with low wages.

Because task complementarity is strong, the net effect of more labor but lower wages is lower labor

income—which in turn leads to low worker consumption.

5 Discussion

5.1 Will the benefits of automation be widely shared?

Propositions 1-3 address the question of whether the benefits of automation will be widely shared.

When automation (θ) is sufficiently slow, and the task complementarities (σ) are sufficiently strong,

the answer is yes. Even as all tasks are asymptotically automated, workers’ share of the economy

remains stable, measured either by income or consumption. Moreover, local increases in the speed

of automation benefit workers by increasing their consumption growth, and by the same amount as

GDP growth.

In contrast, automation speeds above a threshold threaten workers. In the case of weak com-

plementarities, workers’ consumption growth is decreasing in the rate of automation—and strictly

so for an interval of automation speeds. Income and consumption inequality both explode, with

workers’ share of the economy asymptoting to zero. More positively: workers’ consumption growth

nonetheless remains positive, and as time passes they work vanishingly little, so even in this case

workers’ absolute living standards improve as more and more tasks are automated.

7Formally, Propositions 1 and 3 involve growth rates rather than levels. But here we give a heuristic
argument.
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For strong complementarities, multiple equilibria exist—one with a stable labor share, and one

with capital dominance. Workers’ consumption growth is strictly higher in the former, even though

both GDP and capitalists’ consumption grows strictly faster in the latter:

Lemma 5 If stable labor share and capital dominant equilibria coexist then workers’ consumption

grows strictly faster, their labor shrinks to zero strictly faster, and capitalists’ consumption grows

strictly more slowly,8 in the stable labor share equilibrium than in the capital-dominant equilibrium.

5.2 Workers’ income under capital dominance, and the effect of

financial frictions

Capital-dominant equilibria, which by definition feature a vanishing labor share, raise the question of

how workers obtain income to consume. The answer depends on the strength of complementarities;

the speed of automation; and the strength of financial frictions, broadly defined, and as measured

by δw.

Consider first the case of strong complementarities (σ+η < 1). In this case, workers hold capital

in any (stable) capital-dominant equilibrium (Propositions 1 and 2). Moreover, their consumption

is asymptotically entirely funded by capital income:

Corollary 3 In any equilibrium in which workers hold capital, workers’ capital income grows strictly

faster than their labor income.

Because workers hold capital to protect themselves from the consequences of automation in

capital-dominant equilibria, an increase in δw naturally reduces the growth rate of their consumption

(Proposition 1).

Moreover, workers are potentially further harmed by an increase in δw because it expands the

range of automation speeds for which a capital dominant equilibrium coexists with a stable labor

share one (Lemma 5). In this case, small increases in financial frictions potentially cause large

drops in workers’ consumption growth, highlighting the importance of the efficiency of the financial

system, and (depending on interpretation of the origins of δw − δo) financial literacy.

Next, consider the case of weak complementarities. When automation is fast enough to deliver

capital dominance, there are two subcases to consider. If the rate of automation is very high then

labor income falls so quickly that workers again hold capital to protect themselves; by Corollary

3, their consumption is asymptotically entirely funded by capital income. Conversely, if the rate

of automation is more moderate then workers do not hold capital, and fund consumption entirely

from labor income. Even though the labor share of the economy shrinks, labor income nonetheless

grows in absolute terms, enabling strictly positive consumption growth without capital income.

When complementarities are weak, an increase in δw is again bad for workers:

8Capitalists’ consumption grows at the same rate in the two equilibria if (32) holds with equality.
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Corollary 4 An increase in financial frictions from δw to δ̃w > δw strictly reduces workers’ con-

sumption growth if workers hold capital at the initial value δw, and has no effect otherwise.

5.3 Policy: Automation retardation vs capital taxation

Consider the case in which automation is sufficiently fast that a capital-dominant equilibrium arises.

What can a government that wishes to avoid the (relative) immiseration of workers do? We consider

the efficacy of a capital tax rebated to workers against a hypothetical benchmark, in which the

government can directly lower the exogenous pace of automation, θ. For conciseness, we focus on

the case of weak complementarities, and in which capitalists are a small fraction of the population

(λo ≈ 0). Let X be the worker-consumption share that the policies target.

Taxation of capital is equivalent to a level-increase in δo and δw. By itself, such an increase

pushes the economy towards a capital-dominant outcome (again, see the threshold condition (32)).

The reason is that capital-taxation reduces the growth rate of capital, making it scarcer, and raising

its equilibrium return. As discussed following Proposition 2, the net effect is to promote capital

dominance (given task-complementarity σ < 1).

Nonetheless, capital-taxation generates income that a government can redistribute. Given the

assumption that the population-share of capitalists is small, a worker-consumption share of X is

funded with a capital tax of XAK . From Propositions 1 and 2, the associated consumption growth

rate is

η (AK (1−X )− δo − ρ) . (35)

Under the alternative policy, the government lowers θ below the threshold in (32). From Propo-

sition 3, the consumption growth rate associated with the target X is

η
(

AK (1−X )
1

1−σ − δo − ρ
)

. (36)

The comparison of (36) and (35) implies that a government interested in ensuring that workers’

consumption-share remains at X prefers to tax capital rather than retard automation.9

5.4 Hours worked and the long-run labor share

Regardless of whether the labor share asymptotically vanishes, hours worked do. In this, our analysis

is consistent with naïve predictions that neglect potentially countervailing effects stemming from

complementarity between automated and non-automated tasks.

Although one might be tempted to conclude that the asymptotic vanishing of hours-worked

makes it more likely that the labor share shrinks to zero, the reverse is in fact true. To see this,

9If the innovation that drives automation is endogenous and embedded in capital, then capital-taxation
may additionally reduce θ. Our analysis has the benefit of cleanly separating this effect from those arising
from endogenous factor returns.
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consider briefly a perturbed version of our model, in which workers’ labor is exogenously fixed at

some interior level, Lw,t ≡ L̄w ∈ (0, 1), while capitalists’ labor is exogenously set to zero, Lo,t ≡ 0.

Proposition 4 If labor choices are exogenous and constant over time, the economy has a stable

labor share if and only if

θ < η (1− σ) (AK − δo − ρ) . (37)

Comparing Proposition 4 with our analysis above establishes that exogenous labor choices shrink

the range of automation speeds associated with a stable labor share. Economically: Just as capital

dominance is hindered by faster capital accumulation (see above), it is promoted by faster labor

growth (i.e., labor that does not shrink towards 0).

5.5 r, g, and capitalist-worker inequality

Ceteris paribus, higher rates of return on capital favor capitalists at the expense of workers, a

point emphasized by Piketty (2017). Here, we briefly discuss our analysis’s implications for the

asymptotic relation between the net return on capital, which we label r = R− δo;
10 the growth rate

of the economy, gF ; and capitalist-worker consumption inequality. From (14) and our equilibrium

characterization: in a stable labor share equilibrium

r = ρ+
θ

1− σ
and

r

gF
=

ρ+ θ
1−σ

ηθ
1−σ

while in a capital dominant equilibrium

r = AK − δo and
r

gF
=

AK − δo
η (AK − δo − ρ)

.

On the one hand, faster rates of automation are associated both with higher values of r and with

greater capitalist-worker consumption inequality, consistent with the partial equilibrium reasoning

that higher rates of return on capital favor capitalists.

On the other hand, faster rates of automation are associated with lower ratios of r to gF .

The reason is simply that faster automation increases output growth proportionately more than it

increases the return to capital. Combined with the fact that r exceeds gF (as it must in any setting

in which capital and output grow at the same rate, and the transversality condition (1) holds), it

follows that while both r and gF increase in the rate of automation θ, the ratio r/gF decreases.

Consequently, the ratio r/gF is negatively related to capitalist-worker inequality, at least asymp-

totically. This is true both as one varies the automation rate θ, and also as one moves across the

different equilibria that co-exist in the case of strong complementarities (σ + η < 1).

10We evaluate r using the capitalists’ δi = δo as capitalists asymptotically hold all capital in all equilibria.
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5.6 Observable trends

While we predominantly examine asymptotic factor shares in the full-automation limit, the key

forces in our analysis also speak to three long-run empirical trends: (i) the decline in hours worked,

(ii) the rising capital share, which our model naturally connects to a decline in TFP growth, and

(iii) a reallocation in output shares towards services.

Time spent working converges to zero in all equilibria of our model, both for workers and cap-

italists. As such, our analysis predicts a long-term decline in hours worked, even away from the

limit, consistent with empirical observation (Boppart and Krusell, 2020, and references therein).

The prediction stems in part from the preference-specification with consumption and leisure as

complements, η < 1, which does not belong to the class proposed by King et al. (1988) to gener-

ate stable hours worked despite consumption growth. Another driving force, which interacts with

consumption-leisure complementarity, is task complementarity (σ < 1). As the economy accumu-

lates capital but the per-capita time endowment stays fixed, labor-produced tasks become scarce

and wages rise. That is, with task complementarity, automation is labor-augmenting (see also

Aghion et al., 2019) and generates wage growth. With consumption-leisure complementarity, wage

growth translates partially to leisure growth.

Regarding a rising capital share and falling TFP-growth, Lemma 1 implies that TFP growth in

our economy is given by

gTFP =
θ

1− σ

(

1−
1−Xt

αt

)

. (38)

Philippon (2023) argues that, empirically, TFP has grown linearly, which implies that gTFP has

dropped. The last term in (38) implies that our model features declining TFP growth if the capital

share grows faster than the share of automated tasks, αt. Observe first that the share of automated

tasks grows at a rate gα,t = θ(1−αt)/αt. It follows from equation (9) that (given σ < 1) the capital

share grows faster than the share of automated tasks, and hence the growth rate of TFP declines,

if and only if the marginal product of capital rises. US growth rates of capital, output, and the

capital share from 1970-2019 satisfy this condition (see Table 1).

Lastly, our analysis has implications for the fraction of GDP stemming from each non-automated

task or “sector” prior to its automation, namely, Xt/(1− αt). Hence, the growth rate of each non-

automated task’s GDP share prior to automation is

gX,t + θ. (39)

It follows that non-automated sectors grow faster than the overall economy whenever θ outweighs

the rate of decline in the labor share at any point in time. (Note that, at least asymptotically,

this condition is weaker than the condition for a stable labor share. That is: Even with capital

dominance, the growth rate of as-yet non-automated sectors may exceed that of the overall economy.)

In the preliminary calibration we present in the following section, expression (39) is indeed

positive for the US in the 1970-2019 period. It is natural to think of non-automated tasks largely
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as services, which Boppart (2014) shows have seen steadily rising expenditure shares in the US.

Among the industries that have outgrown the overall economy at the fastest pace in recent decades,

many naturally come to mind as examples of non-automated tasks, such as education, healthcare,

restaurants, or performing arts. The industry with the biggest relative decline is manufacturing.11

6 A preliminary calibration

We make a first pass at calibrating our analysis, and in particular, assessing whether the economy

is in the stable-labor share or the capital dominance region. By its nature, this exercise is highly

speculative. But with that caveat, our calibration suggests that the economy will asymptote to a

stable labor share.

Recall that whether or not a stable labor share equilibrium exists depends on whether the

following inequality holds:
θ

1− σ
< AK − δo − ρ. (40)

We consider the LHS and RHS of (40) in turn, starting with the LHS. Substitution of (8) into (10)

and straightforward manipulation yields

θ = (1− σ)(gF,t − gL,t)− σgX,t. (41)

The growth rates gX,t, gL,t and gF,t are observable. The parameter σ is the elasticity of substitution

across tasks; as noted, it coincides with the production-based elasticity of substitution between

capital and labor, and a significant literature is devoted to its estimation (e.g., Chirinko, 2008;

Oberfield and Raval, 2021). Viewing the output aggregation into a single good through a consump-

tion lens, the relevant elasticity of substitution is one across consumption goods (e.g., Nordhaus,

2021). Consequently, (41) links θ to observables and existing estimates of the elasticity σ.

Turning to the RHS of the key inequality (40), we obtain a straightforward lower bound for the

parameter AK by noting that the marginal product of capital satisfies12

AK > FK,t =
1−Xt

Kt

Ft

. (42)

For inputs, we use the following from National Income Accounts (as of 2019), Huberman and Minns

11Using BEA data by industry Manufacturing lags total cumulative growth in value added between 1998
and 2021 by 32%, while Food services (25%), Performing arts, spectator sports, and related activities (25%),
Health care (26%), and Educational services (31%) have all grown faster than total value added. Hubmer
(2023) confirms quantitatively that these sectors—unlike manufacturing—have above-average labor shares.

12To see this formally, observe first that the assumption that all tasks that can be automated are indeed
automated is that AKKt

αt
> ALLt

1−αt
. (As noted, this condition is satisfied once enough capital accumulation

has occurred.) It then follows that Ft <
AKKt

αt
, and hence FK,t < AK .
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(2007), and the US Census Bureau, all in per-capita terms (see Appendix B for details):

(

gF , gL, gK , gX , g1−X , X,
K

F
, δo, ρ

)

= (1.81%,−0.57%, 1.44%,−0.17%, 0.28%, 59.7%, 3.63, 4.32%, 2%)

Our model abstracts from trends in the productivity parameters AL and AK ; but we note that if

instead labor-productivity AL grows over time then expression (41) gives an upper bound for θ.

Figure 2 displays the rate of automation θ (calculated from (41)) and the key ratio θ
1−σ

as

a function of σ. Based on this speculative exercise, our analysis implies that the economy will

asymptote to a stable labor share, as follows. First, the lower bound (42) for AK implies

AK − δo − ρ >
40.3%

3.63
− 4.32%− 2% = 4.79%. (43)

From Figure 2, the ratio θ
1−σ

only approaches this bound if the elasticity parameter σ is close to

1 (it exceeds the bound for σ ≥ 0.94), that is, outside the typical range of empirical estimates.13

Allowing labor productivity, AL, to rise over time would further reduce the estimate of θ.

Appendix B explores two alternative calibrations, both of which lead to the same conclusion of

a stable labor share.

7 Conclusion

Asymptotically full automation does not necessarily spell doom for workers—provided that the

speed of automation is not too fast. Conversely, workers are right to fear the consequences of faster

rates of automation, which both lowers their consumption growth and leaves them with a negligible

share of output. The threshold rate of automation separating these outcomes is closely related

to observables, and a first-pass calibration suggests the current speed of automation is below this

threshold. For faster rates of automation, our analysis suggests that workers are better served by

redistribution funded by capital taxation rather than a deliberate slowing of automation.

13In his synthesis of the literature on capital-labor substitution in production, Chirinko (2008) writes that
“the weight of the evidence suggests a value of σ in the range of 0.40–0.60.” In a recent estimation for the
manufacturing sector, Oberfield and Raval (2021) place it at 0.5–0.7. Given the dual role of σ in capturing
both technology- and preference-based complementarities, we also note that estimates based on consumption
expenditure similarly point towards gross complementarity (Nordhaus, 2021).
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Figure 1: Asymptotic growth rates and labor share as a function of the automation speed θ.
The left and right panels show the cases of weak complementarities (σ + η > 1) and strong
complementarities (σ+η < 1). Dashed and solid lines correspond to multiple equilibria that
arise for intermediate automation speeds.
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Figure 2: θ (dotted, blue) and θ
1−σ

(solid, black) as functions of the elasticity of substitution
between tasks, σ. The automation rate θ is inferred from (41). The dashed, red line marks
the lower bound on AK − δo − ρ from (43).
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A Proofs

Substituting Lemma 1 into the return and wage growth rates (7) and (8) gives

gR,t =
1

σ

(

Xt (gL,t − gK,t) +
θ

1− σ

(

1−
1−Xt

αt

)

+ θ
1− αt

αt

)

(A-1)

gW,t =
1

σ

(

(1−Xt) (gK,t − gL,t) +
θ

1− σ

(

σ −
1−Xt

αt

))

. (A-2)

Output growth (12), αt → 1, and (13) together imply that a stable labor share equilibrium exists

only if

lim (gK − gL) =
θ

1− σ
. (A-3)

Proof of Lemma 1: From the decomposition Ft = KtFK,t + LtFL,t:

Ḟt = K̇tFK,t +KtḞK,t + L̇tFL,t + LtḞL,t

and hence (using also (8))

Ḟt

Ft
=

K̇t

Kt

KtFK,t

Ft
+

KtFK,t

Ft

ḞK,t

FK,t
+

L̇t

Lt

LtFL,t

Ft
+

LtFL,t

Ft

ḞL,t

FL,t

=

(

σ − 1

σ

)

(

(1−Xt)
K̇t

Kt
+Xt

L̇t

Lt

)

+
1

σ

Ḟt

Ft
+

θ

σ

(

(1−Xt)
1− αt

αt
−Xt

)

,

i.e.,

gF,t = (1−Xt) gK,t +XtgL,t +
θ

σ − 1

(

(1−Xt)
1− αt

αt
−Xt

)

,

which yields the result and completes the proof.

Proof of Lemma 2: First, there cannot be an equilibrium in which some group i both holds

capital and has lim g1−Li
< 0, as follows. Suppose to the contrary that such an equilibrium exists.

From the law of motion for capital,

lim gK,i = F̄K − δi + lim
LiFL − Ci

Ki
.

Since group i holds capital, its transversality condition can hold only if the final term on the RHS

is non-positive, which in turn requires

lim gC,i ≥ lim gL,i + lim gW = lim gW ,

where the equality follows from the supposition that lim g1−Li
< 0. But since group i is not at the
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no-work corner, (21) and η < 1 imply that

lim gC,i = η lim gW + lim g1−Li
< lim gW ,

contradicting the previous inequality and establishing the claim.

Second, there cannot be an equilibrium in which some group i does not hold capital and has

lim g1−Li
< 0, as follows. Suppose to the contrary that such an equilibrium exists. Since by

supposition lim gLi
= 0, the budget constraint for this non-capital-holding group i gives

lim gCi
= lim gW .

Substitution into (21) gives

lim g1−Li
= (1− η) lim gW ,

and hence (by supposition, and η < 1)

lim gW = lim gCi
≤ 0.

From (10), limX = 0, and hence F̄K = AK . Intertemporal optimality (25) and assumption (5)

then imply

lim gCi
≥ η

(

F̄K − δi − ρ
)

> 0,

contradicting lim gCi
< 0 and establishing the claim.

So far, we have established that lim g1−Li
= 0 for both groups. We now show that

lim gW > 0.

At least one group i must work (from the Inada condition for the marginal product of labor), and

the intratemporal optimality condition (21) for this group gives

lim gCi
= η lim gW .

Suppose to the contrary that lim gW ≤ 0. Then one obtains a contradiction exactly as above.

The consumption of both groups grows without bound, as follows. From the previous step,

wages grow without bound; and also as above, at least one group must work. The combination of

that group’s intratemporal condition (21) and lim g1−Li
= 0 implies that the consumption of any

group that works grows without bound. Moreover, if a group does not work, consumption of that

group must grow even faster, completing the proof.

Proof of Lemma 3: We first show that workers supply strictly positive labor asymptotically. To

see this, suppose to the contrary that workers do not work asymptotically. Hence workers hold
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capital, and capitalists work. From intermporal optimality (25),

lim gCw
= η

(

F̄K − δw − ρ
)

< η
(

F̄K − δo − ρ
)

≤ lim gCo
, (A-4)

implying that workers work (since capitalists do), contradicting the original supposition.

Similarly, capitalists hold capital asymptotically. To see this, suppose to the contrary that

capitalists do not hold capital. Hence workers hold capital, and capitalists work. Exactly the same

steps as above imply (A-4), which contradicts the following implication of intratemporal optimality

conditions:
1

η
lim gCo

= lim gW ≤
1

η
lim gCw

.

Next, we show that capitalists do not work under capital dominance. Suppose to the contrary

that capitalists and workers both work. By Corollary 1, workers do not hold capital. By capital

dominance, aggregate labor income grows strictly slower than lim gF = lim gK , and hence workers’

consumption Cw likewise grows strictly slower than lim gK . Capitalists’ capital accumulation is

given by
K̇o,t

Ko,t
= FK,t − δo +

Lo,tFL,t

Ft

Ft

Ko,t
−

Co,t

Ko,t
.

By capital dominance, the third term on the RHS converges to 0. The transversality condition for

capitalists then implies that capitalists’ consumption Co asymptotically grows at the same rate as

their capital holdings Ko, i.e.,

lim gCo
= lim gKo

= lim gK .

Hence capitalists’ consumption grows strictly faster than workers’ consumption, and the intratem-

poral optimality conditions imply that capitalists do not work, contradicting the supposition that

they do.

Finally, we show that workers do not hold capital in stable labor share equilibrium. Suppose

to the contrary that both capitalists and workers hold capital. (25) at equality for both groups

directly implies lim gCo
> lim gCw

. Moreover, from Corollary 1, capitalists do not work, and the

transversality condition for capitalists implies lim gKo
= lim gCo

. Workers’ capital accumulation is

given by

gKw,t =
K̇w,t

Kw,t
= FK,t − δw +

Lw,tFL,t

Ft

Ft

Kw,t
−

Cw,t

Kw,t
.

If lim gKw
≥ lim gKo

then

lim gF = lim gK = lim gKw
≥ lim gKo

= lim gCo
> lim gCw

implying

lim gKw
= F̄K − δw + limX lim

F

K
> F̄K − δw,
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violating the workers’ transversality condition. If instead lim gKw
< lim gKo

then

lim gF = lim gK = lim gKo
= lim gCo

> lim gCw
,

implying that
Lw,tFL,t

Ft
Ft−Cw,t asymptotically grows at the same rate as aggregate capital K, which

strictly exceeds the growth rate of worker capital Kw, implying lim gKw
> F̄K − δw and violating

the workers’ transversality condition. The contradiction completes the proof.

Proof of Lemma 4: Recall that lim gF = lim gK (see (13)). From Corollary 2, the asymptotic

growth rate of capitalists’ consumption coincides with the the asymptotic growth rate of aggregate

consumption, lim gCo
= lim gC . Asymptotically, aggregate consumption must grow weakly slower

than output, lim gC ≤ lim gF . For both groups i, the asymptotic growth rate of capital must be

weakly below the asymptotic growth rate of consumption, lim gKi
≤ lim gCi

, since otherwise that

group’s transversality condition is violated.

We next show that lim gKo
= lim gK . If workers do not hold capital then this is immediate. If

workers do hold capital, it suffices to show that lim gKo
≥ lim gKw

. Suppose to the contrary that

lim gKo
< lim gKw

. In this case, capitalists do not work, and since the return on capital asymptotes

to F̄K , capitalists’ consumption must grow weakly slower that capitalists’ capital holdings, lim gCo
≤

lim gKo
. Together, the above inequalities deliver

lim gCo
≤ lim gKo

< lim gKw
≤ lim gCw

,

contradicting Corollary 2, and thereby establishing that lim gKo
= lim gK .

To complete the proof, simply note that

lim gCo
= lim gC ≤ lim gF = lim gK = lim gKo

≤ lim gCo
.

establishing the result.

Proof of Proposition 1: We characterize the conditions for a capital-dominant equilibrium in

which both groups hold capital to exist. From Lemma 3, workers work while capitalists do not .

In a capital-dominant equilibrium, F̄K = AK , and so from (25), the intertemporal conditions for

capitalists and workers are

lim gCo
= η (AK − δo − ρ)

lim gCw
= η (AK − δw − ρ)

while the intratemporal condition for workers is (using Lemma 2)

lim gW =
1

η
lim gCw

= AK − δw − ρ.
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(Note that the above expression is positive by assumption (5).) Capital holdings grow according to

lim gKo
= AK − δo − lim

Co

Ko

lim gKw
= AK − δw + lim

LwFL − Cw

Kw
,

and from (A-2), wages grow according to

lim gW =
1

σ
(lim gK − lim gLw

− θ) .

Capitalists’ transversality condition implies that Co and Ko asymptotically grow at the same rate:

lim gKo
= lim gCo

= η (AK − δo − ρ) .

We characterize an equilibrium in which Cw and Kw asymptotically grow at the same rate. In this

case,

lim gKw
< lim gKo

= lim gK ,

and so

lim gLw
= η (AK − δo − ρ)− σ (AK − δw − ρ)− θ.

A worker’s transversality condition is equivalent to

lim gCw
≥ lim gW + lim gLw

, (A-5)

which substituting in the above expressions is equivalent to

η (AK − δw − ρ) ≥ AK − δw − ρ+ η (AK − δo − ρ)− σ (AK − δw − ρ)− θ,

and hence to

θ ≥ (1− σ) (AK − δw − ρ) + η (δw − δo) . (A-6)

Note that lim gCo
> lim gCw

together with the worker transversality condition (A-5) implies that

the capital-dominance condition is satisfied; and also that capitalists indeed do not work. Moreover,

the worker transversality condition implies that lim gLw
< 0.

Proof of Proposition 2: We characterize the conditions for a capital-dominant equilibrium in

which workers do not hold capital to exist. By the similar arguments to those in the proof of

Proposition 1, the asymptotic equilibrium conditions are as follows. (Relative to the proof of

Lemma 1, the key difference is that workers’ intertemporal optimality condition is replaced with an
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intratemporal budget constraint.)

lim gKo
= lim gCo

= η (AK − δo − ρ)

lim gW =
1

η
lim gCw

lim gCw
= lim gW + lim gLw

lim gW =
1

σ
(lim gKo

− lim gLw
− θ) .

From a worker’s intratemporal optimality and intratemporal budget constraint,

lim gLw
= (η − 1) lim gW .

Hence

lim gW =
lim gKo

− θ

σ + η − 1
.

The capital-dominance condition is lim gKo
> lim gW + lim gLw

. Note that if the capital-dominance

condition holds then lim gCo
> lim gCw

, which ensures that capitalists indeed do not work asymp-

totically. Substituting in, the capital-dominance condition is

lim gKo
> η

lim gKo
− θ

σ + η − 1
.

The condition that workers asymptotically do not want to hold capital is (from (25), and substituting

in for lim gCw
)

lim gW ≥ AK − δw − ρ,

i.e.,

lim gW =
lim gKo

− θ

σ + η − 1
≥ AK − δw − ρ =

1

η
lim gKo

− (δw − δo) .

The above condition and (5) imply that lim gW > 0 and lim gLw
< 0.

Hence an equilibrium of this type exists if either σ + η > 1 and

θ ∈

[

1− σ

η
lim gKo

,
1− σ

η
lim gKo

+ (σ + η − 1) (δw − δo)

]

or if σ + η < 1 and

[

1− σ

η
lim gKo

+ (σ + η − 1) (δw − δo) ,
1− σ

η
lim gKo

.

]

Substituting in for lim gKo
yields the result.

Proof of Proposition 3: We characterize the conditions for a stable labor share equilibrium to

exist. From Lemma 3, workers do not hold capital. Following similiar steps to those in the proofs

of Propositions 1 and 2, but incorporating the possibility that capitalists work, the asymptotic
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equilibrium conditions are

lim gCo
≥ η lim gW

lim gCo
= η

(

F̄K − δo − ρ
)

lim gKo
= F̄K − δo − lim

Co − FLLo

Ko

lim gW =
1

η
lim gCw

lim gCw
= lim gW + lim gLw

lim gW =
θ

1− σ
.

From Lemma 4,

lim gF = lim gKo
= lim gCo

= η
(

F̄K − δo − ρ
)

.

We first show that aggregate labor growth matches worker-labor growth, i.e.,

lim gL = lim gLw
. (A-7)

If capitalists do not work then (A-7) immediate. If instead capitalists work, note that capital evolves

according to

lim gKo
= F̄K − δo − lim

Co − FLLo

Ko
.

Capitalists’ transversality constraint implies that their labor income grows weakly slower than the

common growth rate of their consumption and capital. Moreover, if both capitalists and workers

work, their consumption growth rates must asymptotically coincide (by Lemma 2 and the intratem-

poral optimality conditions). Hence

lim gW + lim gLo
≤ lim gCo

= lim gCw
= lim gW + gLw

, (A-8)

implying that lim gLo
≤ lim gLw

and establishing (A-7).

From the workers’ intratemporal optimality and intratemporal budget constraint,

lim gLw
= (η − 1) lim gW = (η − 1)

θ

1− σ
.

Note that this condition ensures that lim gLw
< 0. Further, from (A-3), a stable labor share requires

lim gKo
− lim gL =

θ

1− σ
.

From (A-7), it follows that

lim gKo
= η

θ

1− σ
,
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which combined with capitalists’ intertemporal optimality implies that the limiting rental rate is

F̄K =
θ

1− σ
+ δo + ρ. (A-9)

From (15), the asymptotic capital share is bounded away from one if and only if
(

F̄K

AK

)1−σ

< 1,

which after substitution for F̄K is equivalent to

θ

1− σ
+ δo + ρ < AK .

Rearranging establishes the stable labor share condition, (32).

Workers’ and capitalists’ consumption grow at the same asymptotic rate, as follows. If capitalists

do not work, this is immediate from the combination of definition of a stable labor share and the

fact that output F , capital Ko and capitalist consumption Co all grow at the same rate. If instead

capitalists work, then it follows intratemporal optimality conditions, as already noted in (A-8).

Finally, the expression for the limiting labor share follows from the substitution of F̄K into (15).

This completes the proof.

Proof of Lemma 5: Equilibrium coexistence arises when complementarities are weak (σ+ η < 1)

and

θ ∈ [(1− σ) (AK − δw + ρ) + η (δw − δo) , (1− σ) (AK − δo + ρ)] . (A-10)

In the stable labor share equilibrium,

lim gCo
= lim gCw

=
η

1− σ
θ

lim gLw
=

η − 1

1− σ
θ

while in the capital-dominant equilibrium,

lim gCo
= η (AK − δo + ρ)

lim gCw
= η (AK − δw + ρ)

lim gLw
= η (AK − δo − ρ)− σ (AK − δw − ρ)− θ.

It is immediate that lim gCo
(respectively, lim gCw

) is higher (lower) in the capital dominant equi-

librium than in the stable labor share equilibrium. Moreover, both comparisons are strict, with the

exception of lim gCo
at the upper boundary of the interval (A-10).

It remains to consider the labor growth rate lim gLw
. Because it is linear in θ in both equilibria,

it suffices to consider the lower and upper boundaries of the interval (A-10).
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At the lower end of the interval, in the stable labor share equilibrium

lim gLw
= (η − 1) (AK − δw − ρ) +

η (η − 1)

1− σ
(δw − δo) ,

while in the capital-dominant equilibrium,

lim gLw
= (η − 1) (AK − δw − ρ) ,

which is strictly greater.

At the upper end of the interval, in the stable labor equilibrium

lim gLw
= (η − 1) (AK − δo − ρ) ,

while in the capital-dominant equilibrium,

lim gLw
= (η − 1) (AK − δo − ρ) + σ (δw − δo) .

which again is strictly greater, completing the proof.

Proof of Corollary 3: The only case in which workers hold capital is characterized in Proposition

1. Workers’ labor income grows at rate gLw
+ gW , which evaluating equals

η (AK − δo − ρ)− σ (AK − δw − ρ)− θ + (AK − δw − ρ) .

Substituting in the equilibrium condition (27), the above expression is bounded above by

η (AK − δw − ρ) ,

which in turn equals the growth rate of worker’s consumption, completing the proof.

Proof of Corollary 4: The result is immediate for strong complementarities (σ + η < 1), as

covered in the main text. Here, we consider the case of weak complementarities (σ + η > 1). From

Propositions 1 and 2, workers hold capital if and only if the automation rate θ exceeds the threshold

value of

(1− σ) (AK − δw − ρ) + η (δw − δo) = (1− σ) (AK − δo − ρ) + (η + σ − 1) (δw − δo) . (A-11)

Hence from Proposition 2, as θ approaches the threshold (A-11) from below, the growth rate of

workers’ consumption approaches

η
η (AK − δo − ρ)− (1− σ) (AK − δo − ρ)− (η + σ − 1) (δw − δo)

σ + η − 1
= η (AK − δw − ρ) ,
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which matches the growth rate of workers’ consumption for any value of θ above the threshold

(A-11). Hence (from Propositions 1 and 2 again), the growth rate of workers’ consumption in a

capital dominant equilibrium is simply

max

{

η
η (AK − δo − ρ)− θ

σ + η − 1
, η (AK − δw − ρ)

}

,

where the first and second terms in the maximand correspond, respectively, to equilibria in which

workers do not capital, and hold capital. The result is then immediate.

Proof of Proposition 4: We exogenously set labor choices to Lo,t = 0 and Lw,t ≡ L̄w ∈ (0, 1).14

Intertemporal optimality of capitalists, combined with the transversality condition, implies

lim gKo
= η

(

F̄K − δo − ρ
)

.

As before, aggregate capital growth equals capitalists’ capital growth,

lim gK = lim gKo
,

regardless of whether or not workers hold capital (since even if workers hold capital, their capital

holdings grow more slowly than that of capitalists).

As before, the condition for capital dominance is that labor income asymptotically grows slower

than capital income. Since labor supply is constant, this condition is simply

lim gW < lim gK .

From (A-2), capital dominance also requires

lim gW =
1

σ
(lim gK − θ) .

Finally, under capital dominance the return on capital asymptotes to AK . Together, these obser-

vations imply that capital dominance requires

θ > η(1− σ)(AK − δo − ρ). (A-12)

Conversely, in a stable labor share equilibrium, consumption, capital income, and labor income

must grow at the same rate. Combining (11)’s characterization of wage growth in a stable labor

14Note that we do not remove leisure from the agents’ preferences. In the limit as consumption grows
unbounded but leisure is bounded, the IES with consumption and leisure as gross complements tends to
η rather than 1/γ. Retaining this feature of preferences in the exogenous-labor case facilitates comparison
with the endogenous-labor case.
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share equilibrium with intertemporal optimality for capitalists gives

θ

1− σ
= gW = η

(

F̄K − δo − ρ
)

.

As in the proof of Proposition 3, a stable labor share equilibrium requires F̄K < AK , and hence

requires

θ < η(1− σ)(AK − δo − ρ),

which combined with (A-12) completes the proof.
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B Calibration

B.1 Details for inputs

Table 1 below reports the inputs we use in our calibration, along with sources.15,16

Input Description Value Source

gF Growth rate of output 2.79% National income accounts
gL Growth rate of labor (per worker) −0.57% Huberman and Minns (2007)
gK Growth rate of capital 2.42% National income accounts
gX Growth rate of labor share −0.17% National income accounts
g1−X Growth rate of capital share 0.28% National income accounts
X Labor share 59.7% National income accounts
Kt

Ft
Capital/output ratio 3.63 National income accounts

δo Depreciation 4.32% National income accounts
ρ Annual time preference 2% Standard

Population growth rate 0.98% US Census Bureau

Table 1: Input values. Levels from national income accounts are estimated as of 2019. Growth
rates refer to relative changes between 1970 and 2019. The growth rates of output and capital are
for aggregate quantities; the calibration uses per-capita growth (subtracting population growth).

B.2 Alternative calibration approaches

We pursue two alternative calibration approaches complementing the exercise in Section 6.17 The

first one starts with an equation analogous to (41) but obtained from the law of motion of the

capital share:
1− αt

αt
θ = σg1−X,t + (1− σ) (gK,t − gF,t) . (A-13)

Given observable growth rates for the capital share, capital, and output, the LHS can be estimated

directly from existing estimates of the elasticity parameter σ.

To move from (A-13) to an estimate of θ one needs information about αt, the fraction of tasks

already automated. This number is hard to observe directly, and in our approach below we are

agnostic about its value.

15The growth rates of output, labor supply, and the labor share are not constant in our model. We estimate
gF,t and gX,t using data from 1970 to 2019. Our estimate for the growth rate of hours worked per capita
comes from Huberman and Minns (2007).

16The empirical measurement of depreciation corresponds to
λoKo,t

Kt
δo +

λwKw,t

Kt
δw ≥ δo. Using a smaller

value of δo than 4.32% would increase the estimated value of the RHS of (40), and reinforce the conclusion
below that empirically the condition is likely to hold.

17A fourth possible approach to estimating θ would be to use the TFP equation (38). However, such an
approach is susceptible to two significant pitfalls, and accordingly we do not pursue it. First, the inferred
value of θ is very sensitive to the input αt when αt is close in value to the capital share of the economy Xt,
which we cannot rule out a priori. Second, extracting θ from the TFP formula (38) is sensitive to the model
assumption that technological advance consists solely of changes in the fraction of automated tasks.
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For any given value of αt, we can further tighten the estimate of AK relative to the lower bound

presented in (42). The expression for the capital share (14) can rewritten to yield

AK =
Ft

Kt

(

αt

(1−Xt)σ

)
1

1−σ

. (A-14)

The drawback of this expression, relative to the lower bound in (42) is that it requires an assumption

on αt. Note, however, that both the value of θ inferred from (A-13) and the value of AK inferred

from expression (A-14) are increasing in the automation share αt, and hence both the estimated

LHS and RHS of the key inequality (40) are likewise increasing in αt.

Using once again inputs from Table 1, with gK,t and g1−X,t estimated over the same 1970–2019

sample as gF,t, Table 2 displays, for a range of possible values of αt and σ, the rate of automation θ

(calculated from (A-13)), the key ratio θ
1−σ

, and the productivity parameter AK (calculated using

(A-14)). The ratio θ
1−σ

only exceeds this bound if the elasticity parameter σ is relatively close to

1 and the fraction of tasks already automated (αt) is high. Note that the baseline calibration in

Section 6 implies an estimate of αt (from equations (41) and (A-13) and the observable growth

rates). These estimates indicate that the majority of tasks is already automated but are decreasing

in σ: for σ = 0.8, the implied αt is 0.8, dropping to 0.6 for σ = 0.9.

In the table, we use color shading to highlight the combinations of σ and αt for which the ratio
θ

1−σ
either exceeds 4.79%, or at least approaches it. But those parameter choices that deliver θ

1−σ

anywhere close to the boundary of 4.79% also imply large values for AK , and hence for AK −δo−ρ,

so that the stable-labor share inequality (40) continues to hold.18

Finally, an alternative and independent approach to estimating 1−αt

αt
θ is as follows. The fraction

of investment devoted to new automation, φt, equals

φt =
α̇t

Kt

αt

K̇t

=
1−αt

αt
θ

gK,t
. (A-15)

Rearranging:
1− αt

αt
θ = φtgK . (A-16)

Table 2 shows the results of inferring θ from (A-16) instead of from (A-13), for a range of values of

the fraction of investment devoted to new automation.The conclusions are the same as those drawn

from Figure 2 and Table 2.

18Note that high values of αt lead to extremely high estimates of AK , the productivity of capital in an
all-capital economy. The reason is as follows. First, note from (14) that the capital share is decreasing in
the amount of “effective” capital AKKt, since tasks are complements (σ < 1). The current capital share in
the economy is much less than 100%. If one believes that most tasks are already automated, the only way
to explain the observed capital share is to posit that there is a large amount of “effective” capital AKKt.
Given observed levels of capital Kt, this in turn implies that AK must be high.
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σ = 0.6 σ = 0.8 σ = 0.9

αt θ θ/(1− σ) AK θ θ/(1− σ) AK θ θ/(1− σ) AK

0.1 0.00% 0.01% 0.33% 0.02% 0.09% 0.01% 0.02% 0.24% 0.00%

0.2 0.01% 0.02% 1.89% 0.04% 0.19% 0.33% 0.05% 0.54% 0.01%

0.3 0.01% 0.03% 5.20% 0.07% 0.33% 2.49% 0.09% 0.93% 0.57%

0.4 0.02% 0.04% 10.68% 0.10% 0.51% 10.48% 0.15% 1.45% 10.10%

0.5 0.02% 0.06% 18.66% 0.15% 0.77% 31.99% 0.22% 2.18% 94.04%

0.6 0.04% 0.09% 29.43% 0.23% 1.15% 79.60% 0.33% 3.27% 582.28%

0.7 0.06% 0.14% 43.27% 0.36% 1.79% 172.04% 0.51% 5.08% 2720.19%

0.8 0.10% 0.24% 60.41% 0.61% 3.06% 335.42% 0.87% 8.71% 10339.94%

0.9 0.22% 0.54% 81.10% 1.38% 6.89% 604.44% 1.96% 19.60% 33577.12%

Table 2: θ
1−σ

and AK as functions of the current level of automation, αt, and the elasticity of substitution between
tasks, σ. The automation rate θ is inferred from (A-13). Color shading highlights values of σ and αt for which
the ratio θ

1−σ
approaches or exceeds the lower bound (43).

φt = 5% φt = 15% φt = 25%

αt θ θ/(1− σ) θ θ/(1− σ) θ θ/(1− σ) AK

0.1 0.01% 0.02% 0.02% 0.12% 0.04% 0.40% 0.33%

0.2 0.02% 0.04% 0.05% 0.27% 0.09% 0.90% 1.89%

0.3 0.03% 0.08% 0.09% 0.46% 0.15% 1.54% 5.20%

0.4 0.05% 0.12% 0.14% 0.72% 0.24% 2.40% 10.68%

0.5 0.07% 0.18% 0.22% 1.08% 0.36% 3.60% 18.66%

0.6 0.11% 0.27% 0.32% 1.62% 0.54% 5.40% 29.43%

0.7 0.17% 0.42% 0.50% 2.52% 0.84% 8.40% 43.27%

0.8 0.29% 0.72% 0.86% 4.32% 1.44% 14.40% 60.41%

0.9 0.65% 1.62% 1.94% 9.72% 3.24% 32.40% 81.10%

Table 3: θ
1−σ

and AK as functions of the current level of automation, αt, and the fraction of
investment devoted to new automation (either 10%, 20%, or 30%). The automation rate θ is inferred
from (A-16). The table uses σ = 0.6 throughout; adopting higher values of σ only strengthens the
conclusion that (40) holds. Color shading is as in Table 2.
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C Analysis of representative agent case

We consider the representative agent case, i.e., δo = δw. We simply write δ for this common value,

and related, drop all group-specific subscripts.

By (13), capital and output asymptotically grow at the same rate. Moreover, consumption must

asymptotically grow at this same rate, as follows. Certainly consumption cannot asymptotically

grow faster than F . Since F and K asymptotically grow at the same rate, this in turn implies that

C cannot asymptotically grow faster than K. But nor can C asymptotically grow slower than K;

if it did, C
K

→ 0, and so

gK →
F

K
− δ ≥ FK − δ,

which would violate the transversality condition. Hence F , K, and C must all grow at the same

rate asymptotically,

lim gF = lim gK = lim gC . (A-17)

Inada conditions in the production function imply that the representative agent both works and

holds capital, and so intra- and intertemporal optimality implies

gC − g1−L = ηgW , (A-18)

lim gC = η
(

F̄K − δ − ρ
)

. (A-19)

Lemma A-1 In the representative agent benchmark, an equilibrium with a stable labor share exists

if

θ < (1− σ) (AK − δ − ρ) . (A-20)

The asymptotic growth rate of output, capital, and consumption is

gF = gK = gC =
ηθ

1− σ
. (A-21)

Wages grow faster than consumption

lim gW =
gC
η
, (A-22)

while labor converges towards 0 according to

lim gL =

(

1−
1

η

)

gC < 0. (A-23)

The labor share converges towards

limX = 1−

(

δ + ρ+ θ
1−σ

AK

)1−σ

(A-24)

Lemma A-2 In the representative agent benchmark, an equilibrium with capital dominance exists
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if

θ > (1− σ) (AK − δ − ρ) . (A-25)

The asymptotic growth rate of output, capital, and consumption is

gF = gK = gC == η (AK − δ − ρ) . (A-26)

Wages grow faster than consumption,

lim
ḞL

FL
=

gC
η
, (A-27)

while labor converges towards 0 according to

lim gL =

(

1−
σ

η

)

gC − θ < 0. (A-28)

Proof of Lemma A-1: Recall that a stable labor share arises if wages asymptotically grow

according to (11), and asymptotic capital and labor growth are linked via (A-3). From (11), wages

grow without bound,

FL → ∞. (A-29)

Moreover, the asymptotic growth rate of leisure must be zero,

lim g1−L = 0, (A-30)

as follows. If instead lim g1−L < 0 then intratemporal optimality (A-18) and the complementarity

of labor and leisure (η < 1) implies that lim gW > lim gC . But lim g1−L < 0 also implies that

lim gL = 0, and hence (11) and (A-3) imply that lim gW = gK , a contradiction (since gK = gC by

(A-17)).

So intratemporal optimality (A-18) implies that wages grow faster than consumption,

lim gW =
1

η
lim gC . (A-31)

Substituting in (11) gives

lim gC =
ηθ

1− σ
. (A-32)

Substituting into intertemporal optimality (A-19) gives

F̄K = δ + ρ+
θ

1− σ
. (A-33)

The condition for a stable labor share is simply F̄K < AK , i.e.,

θ < (1− σ) (AK − δ − ρ) . (A-34)
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The growth rate of labor is given by (A-3),

lim gL =

(

1−
1

η

)

gC < 0. (A-35)

The consumption to capital ratio lim C
K

is determined by the law of motion for capital: again using

gC = gK and intertemporal optimality (A-19),

lim
C

K
=

F̄K

lim KFK

F

− δ − gK = F̄ σ
KA1−σ

K − δ − η
(

F̄K − δ − ρ
)

, (A-36)

which is strictly positive since η < 1 and AK > F̄K > δ, completing the proof.

Proof of Lemma A-2: Under capital dominance, (16) holds. From (A-2), wages grow according

to

lim gW =
1

σ
(lim gK − lim gL − θ) . (A-37)

The capital dominance condition is

lim gW < gF − lim gL. (A-38)

The asymptotic growth rate of leisure must be zero,

lim g1−L = 0, (A-39)

as follows. The intratemporal optimality (A-18) condition implies lim gC ≤ η lim gW . If lim g1−L < 0

then lim gL = 0, and the capital dominance condition reduces to lim gW < lim gF = lim gC . Since

η < 1, these two bounds on g contradict each other.

So intratemporal optimality (A-18) implies that wages grow faster than consumption,

lim gW =
gC
η
. (A-40)

In particular, (11) implies that wages grow without bound,

FL → ∞. (A-41)

Substituting into intertemporal optimality (A-19) gives consumption growth in terms of the return

on capital, which under complete automation is simply AK :

lim gC = η (AK − δ − ρ) . (A-42)

Combining the two expressions above for the growth rate of wages, and using gK = gC , the growth
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rate of labor equals

lim gL =

(

1−
σ

η

)

gC − θ. (A-43)

Note that the capital dominance condition and the expression for the growth rate of wages directly

imply that

lim gL < 0.

The capital dominance condition rewrites as

gC
η

<
σ

η
gC + θ, (A-44)

i.e.,

θ > (1− σ) (AK − δ − ρ) . (A-45)

The consumption to capital ratio lim C
K

is determined by the law of motion for capital,

lim
C

K
= AK − δ − g, (A-46)

which is strictly positive since η < 1 and AK > δ, completing the proof.
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